
ht. J. Hear Mass Transfer. Vol. 18, pp. 15-24. Pergamon Press 1975. Printed in Great Britain 

TEMPERATURE AND MOISTURE DISTRIBUTIONS 
DURING CONTACT DRYING OF 

A MOIST POROUS SHEET 

M. D. MIKHAILOV and B. K. SHISHEDJIEV 
Applied Mathematics Centre, VMEI, Sofia, Bulgaria 

(Receioed 20 January 1974) 

Abstract-Using Luikov’s set of differential equations, the drying of a layer of moist material in contact 
with a hot plate is investigated. In this journal the same problem is studied by Bruin [l] with the 
simplifying assumption that the moisture movement under influence of moisture potential gradient is 
negligible. The present analysis is based on an exact analytical solution without the mentioned restriction. 
The influence of dimensionless parameters on the temperature and moisture potential distributions is 

illustrated by numerical examples. 

NOMENCLATURE 

Dimensionless criteria 

Fo = aqrjD2, 

Lu = da,, 
Bi, = uq D/l,, 
Bi, = u, D/l,,,, 

Ko = 
rc,( 00 - 0.) 

Cq(L--0) ’ 
Pn = ws- to) 

c,(& - e,) ’ 

&, 

T(X, Fo) = s, 
s 0 

f&--O 
Wf, F4 = =, 

0 * 

X = x/D, 

where 

Fourier number; 
Luikov number; 
Biot number for heat transfer; 

Biot number for mass transfer; 

Q. heat-transfer coefficient [mT-3”C-1]; 

&n, mass-transfer coefficient [mL-2T-‘“M-‘]; 

I 4’ thermal conductivity [mLT-3”C-‘]; 
i m> moisture conductivity [mL-‘T-‘“M-‘1; 

4 
D:’ 

heat flux [mTe3]; 

thickness of the layer of moist material [L]; 

Kossovitch number; 
Ki, = ?!!& 

l,(t,- to)’ 
dimensionless heat flux. 

Posnov number; 

phase change criterion; 

dimensionless temperature; 

Subscripts 

0, 

s, 
* 

initial; 

surroundings; 
in equilibrium with surrounding air. 

1. INTRODUCTION 

dimensionless moisture transfer 

potential; 

dimensionless coordinate; 

AN EXACT computation of temperature and moisture 
distribution when drying porous bodies can be accom- 
plished through numerical solution of the well-known 

Luikov’s system of coupled partial differential equa- 
tions. Such an approach has not found wide application 
chiefly because there is not enough data about the 

dependance of the heat-transfer parameters on moisture 
and temperature. The information about the tempera- 
ture and moisture distributions, obtained in this way is 

true, but it is valid only for concrete material under 
given conditions of drying. 

coordinate perpendicular to the surface [L]; 
temperature [“Cl; 
moisture potential [“Ml; 

time [T] ; 
thermal diffusivity coefficient [L’T-‘I; 
diffusion coefficient of moisture in the 
material [L’T-‘1; 
specific heat of evaporation [L2T-=]; 
thermal gradient coefficient [“C1]; 
specific isothermal mass capacity of the 
material [OM-‘I; 
specific heat capacity of the material 
[L=T-=“C-‘I; 

Taking an average for the heat-transfer parameters, 
the system, mentioned above, can be linearized [2]. In 
this case the results obtained and the results expected 
do not coincide so well, but on the other hand it is 
possible to make a quantitative analysis of the influence 
of the nondimensional parameters on temperature and 

moisture changes. The results obtained through such an 
approach are universal. That is why many investiga- 
tions were made on the base of the linearized system [3]. 
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A study of temperature and moisture distributions 
during contact drying of a sheet of moist material was 
presented by Bruin [I]. Having in mind the great 
practical importance of this paper. it was discussed in 

detail in [4]. 
Because of mathematical difficulties, arising from 

assymmetry of boundary conditions Bruin did not 

succeed in finding an exact analytical solution of the 

problem. That is why he used the simplifying assump- 
tion of Makavozov [S-6], that is that the moisture 

potential gradient does not influence the movement of 
moisture, assuming that Lu(~‘~(~/?.x~) = 0. 

This simplification of the linearized system is in- 

admissible. It leads to similar distributions of moisture 

and temperature potentials, thus reducing Luikov’s 

system to a single partial differential equation. That 
is why the Laplace image of the solutions contains 

only two constants, when there are four boundary 
conditions for their satisfaction. That was the reason 

why Bruin next united incorrectly the boundary con- 
ditions thus Bi, being excluded. But Bi, is a parameter 
with immense influence on the moisture distribution 
and hence on the temperature distribution. 

Our opinion is that Bruin’s graphics give not only a 
quantitively but also a qualitively untrue picture of 
temperature and moisture fields. To substantiate this 

opinion in the present work we give an exact analytical 
solution of Bruin’s problem, on the base of which the 
examples in [l] (Fig. 2a, b, c) are calculated. It was not 
difficult to obtain such an exact solution, because it is 

contained in the recently published general solution 

r71. 

2. STATEMENT AND SOLUTION OF THE PROBLEM 

In [l] (see Fig. 1, p. 46) Bruin analysed the contact 
drying of a moist porous sheet on a hot plate. 

Temperature and moisture distributions is described 

by Luikov’s system 

r?T(X, Fo) ?T(X, Fo) c:O(X, Fo) 
= _ 

clFo ?X2 
EKo--- 

?Fo 
(1) 

lXl(X, Fo) 
pzz 

Llc 220(X. Fo) _ LuPn ?‘T(X, Fo) 

3Fo ?X2 6x2 
(2) 

Equations (1) and (2) are subjected to the following 
conditions : 

Initial condition: 

T(X, 0) = 0, 0(X, 0) = 0. (3) 

Heat flux through the hot plate: 

ST(O, Fo) 
___.- = -Ki,. 2” (4) 

Mass balance on the surface of the hot plate 

cV(0. Fo) ?T(O, Fo) 
~~ 

?X 
- Pn -;xm = 0. 

Heat balance on the free surface: 

(5) 

ST(1, Fo) 
p-B&[1 -T(l, Fo)] 

iX 
+(l -s)KoLuBi,[l -O(l, Fo)] = 0. (6) 

Mass balance on the free surface: 

?O(l, Fo) 
--------+Pn 

?X 
F+&[l-f1(l;Fo)] =o. (7) 

The exact analytical solution of the system (l)-(2) 

under the initial condition (3) and the boundary con- 
ditions (4)-(7) is obtained in Appendix 1 and has the 

form : 

@X9 fi 

where 

,9,’ ZZ ; 

X ,gi ( - 1)‘(9; - l)bj(pi) COS($s -jpr X) (8) 
? 

)= l+PnKi,(l-X)+Pn f Aie-p?Fo 
i=l 

’ C (- 1)jbj(pi)cOS(93-jpiX) (9) 
j=l 

l+tKoPn+&+(-1)’ 

X 1 +eKoPn+& (10) 

X jb:(lli)c2dl(~i)-b:(~i)cld2(~i)}-1 (11) 

l+(l_$?)l_eLu!+ 
J 

& Bh I 

SiIl(s!Jjpi) 
dj(Pi) = l + r cos(Qj/4). (15) 
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Table 1. (continued) 
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The pi are the positive roots of the characteristic 

equation f(pi) = 0, where: 

The roots of this equation were calculated with an 
accuracy of seven correct symbols using the method of 
dividing the interval into halves. The comparison of 

the signs of F(p) at the ends of the consequent intervals 
with length h gives the interval, where a root is supposed 

to exist. The presence of different signs is an indication 
for the existence of a root in the corresponding interval. 

A substantial defect of this simple method is the 

possibility of omitting roots when choosing too large 
a step h. After a numerical experiment we chose as a 

most appropriate step h = 0.02, but it does not 

guarantee the omission of roots. 
In Table 1 are given the first twenty-five roots of 

equation (16) with five correct symbols after the decimal 

point for some of the cases analysed. The utility of 
publishing of detailed tables of roots is doubted because 

their calculation each time is considered to be more 
convenient than their being introduced as input data in 
a computer. Table 1 is supposed to serve as an 
appliance to those investigators, who would wish to 

program our solution. 

Table 1. Roots of equation (16) 
Lu = 0.4, Pn = 0.6, Ko = 5, Bi, = 5 

Ii Bi, = 1 

1 0.51519 
2 1.34300 
3 1.79173 
4 3.52453 
5 4.22759 
6 5.16807 
7 6.89770 
8 7.62573 
9 8.58915 

10 10.31135 
11 11.16115 
12 12.01553 
13 13.73489 
14 14.74381 
15 1544358 
16 17.16181 
17 18.34788 
18 18.87225 
19 20.59016 
20 21.96365 
21 22.30093 
22 24.01923 
23 25.58828 
24 25.72771 
25 27.44870 

Bi, = 2.5 

E = @2 

- 
Bi, = 5 

0.6383 1 
3.61562 
4.36375 
5.11397 
6.91995 
7.71052 
8.55753 

10.3 1443 
11.22749 
11.99226 
13.73204 
14.799 11 
15.42423 
17.15704 
18.39636 
18.85436 
2@58487 
22.00971 
2228135 
24.01393 
2744357 
30.87351 
32.59780 
32.85158 
34.30361 

0.69360 
3.70757 
4.73523 
4.91463 
694944 
7.87753 
8.48721 

10.31890 
11.34959 
11.94316 
13.72768 
14.90019 
15.38302 
17.14951 
18.48794 
18.81354 
20.57632 
22.11613 
22.21891 
24.00522 
27.43504 
30.86529 
32.60072 
32.87995 
34.29571 

Bi, = 10 

0.72335 
3.78244 
6.98836 

10.32595 
13.72017 
17.13578 
2056010 
23.98821 
27.41802 
30.84856 
32,605 10 
32.93866 
34.27936 
36.01884 
36.57647 
37.71014 
39.44282 
40.20748 
41-14069 
42.87024 
43.83796 
44.57075 
46.29918 
47.46984 
47.99976 
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Ii Bi, = 1 

1 0.49959 
2 1.34721 
3 1.69665 
4 3.20967 
5 6.26174 
6 7.81258 
7 8.33908 
8 9.35159 
9 10.90351 

10 12.27194 
11 12.44475 
12 14.00388 
13 15.55698 
14 16.22997 
15 17.10688 
16 18.66012 
17 2 1.76494 
18 23.31830 
19 24.21321 
20 24.87026 
21 26.42386 
22 27,978 18 
23 28.21419 
24 29.52991 
25 31.08341 

Bi, = 2.5 
E = 0.4 

Bi, = 5 

0.60870 
3.27246 
6.26861 
7.84823 
8.39195 
9.34485 

10.91057 
14.00474 
15.56504 
16.26407 
17.10395 
18.66226 
21.76506 
23.32121 
24.23847 
24.86806 
26.42478 
27.98513 
28.22910 
29.52982 
31.08479 
32.2424 1 
32.63355 
34.19026 
35.74585 

0.65670 
3.34800 
6.28007 
7.89435 
8.49463 
9.33168 

10.92161 
14.00620 
15.57705 
16.3229 1 
17.09854 
18.66573 
21.76527 
23.32580 
24.28 127 
24.86398 
26.4263 1 
27.99496 
28.25572 
29.52966 
31-08702 
32.27725 
32.62892 
34.19105 
35.74950 

Bi, = 10 

0.68259 
3.43193 
6.30273 
7.94972 
8.73540 
9.29293 

10.94124 
14.00918 
15.59657 
16.44665 
17.08507 
18.67237 
21.76570 
23.33407 
24.36948 
24.85383 
26.42932 
28.00944 
28.31408 
29.52932 
31.09123 
32.35056 
32.61615 
34.19263 
35.75587 

ii 
E = 0.8 

Bi, = 1 Bi, = 2.5 

1 0.47217 0.56011 
2 1.34923 2.89373 
3 1.56302 4.20726 
4 2.82690 5.29285 
5 4.13418 5.38607 
6 5.11142 6.8 1454 
7 5.45586 8.15659 
8 6.79104 10.82354 
9 8.12897 12.16937 

10 9.474 11 13.51774 
11 9.52488 14.10957 
12 10.81071 14.84915 
13 12.15381 16.19714 
14 13.49775 17.54347 
15 14.08092 18.70734 
16 14.84166 18.87321 
17 16.18652 20.2303 1 
18 17.53165 21.57676 
19 18.67239 22.92579 
20 18.87654 23.2953 1 
21 20.22241 24.26587 
22 21.56814 25.61279 
23 22.91410 26.95961 
24 23.27993 27.91393 
25 24.25987 28.30183 

Bi, = 5 
-,__ 

0.59744 
2.97822 
4.29142 
6.85339 
8.19809 

IO.84592 
12.19444 
13.54706 
14.15944 
14.86293 
16.21477 
17.56219 
18.77126 
18.86232 
20.24370 
2 1.59084 
22,943 18 
23.32264 
24.27626 
25.62412 
26.97161 
27.94214 
28.30859 
29.65963 
3 1.00663 

Bi, = 10 

0.61754 
3.07664 
4.37686 
6.92607 
8-26442 

10.89357 
12.24075 
13.59208 
14.26027 
14.89580 
16.24946 
17.59594 
2@27114 
21.61777 
22.97085 
23.38183 
24.29856 
25.64652 
26.99378 
27.99579 
28.32543 
29.67876 
31.02550 
32.38121 
32.58617 

From physical considerations it is clear that for 

small values of the nondimensional time (Fo < 0.05) 

and close to the initial surface (X = 0) the results 
obtained through solutions (8) and (9) are supposed to 
coincide with those. obtained from the solutions for a 
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semispace. subjected to the same influences. Such 

solutions are given in Appendix 2. 

The possibility of omitting roots in calculating pi 

made us program the solutions (17).-(18). The correct- 
ness of the results given in the present paper was 

controlled through them. 

Bl,=Bi,=2.5 
Ko =5 

/ a- 

0 

t 

-0 2 
I I / 

0 02 04 06 08 5’ 

X x 

FIG. 1. Dimensionless temperature distributions during FIG. 2. Dimensionless moisture transfer potential distribu- 
contact drying for Lu = 0.4, E = 0.2, Bi, = Bi, = 2.5, tions for Lu = 0.4, E = 0.2, Bi, = Bi, = 2.5, Ko = 5, 

Ko = 5, Pn = 0.6 and Ki, = 0.9. Pn = 0.6 and Ki, = 0.9. 

3. DISCUSSION OF RESULTS AND 
NUMERICAL EXAMPLES 

The temperature and moisture distributions were 
calculated in terms of following set of variables [I]: 

Lcr = 0.4,0.02; t: = 0~2,0~4,0~8. 1.0 

Pn = 0.6; Ko = 5.0; Ki, = 0.9; Bi, = 2.5; 

Fo = 0.05,O.l. 0.2,0.4,0.X, 1.6,3.2,6,4. 

From the thermodynamical point of view the heat 
and mass transfer is not equiprobable for arbitrary 
values of La and EKoPn [2]. For small values of Lu 

values of FKoPn < 0.3 are supposed to be more 

probable while if LU > 0.3 then EKoPn > 0.4. 

In our examples EKoP~ > 0.6 and, consequently 
Lzr = 0.02 is more or less improbable. Aiming the 
comparison of our results with the ones, given in [l], 

we calculated such an example too. 
In contrast to [I] for Fo the value 0.2 is added and 

the value of the phase change criterion E = 0.6 is taken 
to be 0.4. This change is made because from known 

experimental results E varies in the intervals 0.0-0.4 

and 0.8-1.0. In [2] it is stated that the experiments of 
Polonskaia and Lebedev show that for a gypsom plate 

1 8 Ko -5 
Pn =0.6 
KI, = 0.9 

I6- 
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E = 0.045; for clay 0.75-1.0; for sand 0.2-0.4 and for 

wood 0.09-0.2. 
The heat- and mass-transfer criterions of Biot in 

real conditions depend on each other. This interrelation 
is established through the balances of heat and mass. 
The change of Bi, implies a change of Bi, and their 
numerical values are of approximately the same order 

PI. 
Taking into account the fact that Bi, is not present 

in the solutions, given in [l], in our fundamental 
examples we accepted it to be equal to Bi, = 2.5. In 

order to investigate the influence of Bi,, its values 
were varied according to examples, given in [2], as 
follows: 

Bi, = 1.0,2.5,5.0,10.0. 

On the basis of solutions (8)-(16) an ALGOL 
program for computation of T(X,Fo) and 0(X, PO) 

was prepared. Although Table 1 gives only the first 
twenty-five roots in our program this number is 

determined automatically so that the prescribed 

accuracy for the computation of the temperature and 
moisture distributions is guaranteed. 

6.0.2 ___ Lu - 0.4 
20 r.0,4 --------L%,.~i,.2.5 

-Pn=@6 
xi,. 0.9 

1.6 

06 

-0 2 I I I 1 I 
0 0.2 04 06 08 1 c 

X 

FIG. 3. Influence of the phase change criterion (E = 0.2,0.4, 
0.8 and 1) on the temperature distribution for Lu = 0.4, 

E = 0.2, Bi, = Bi, = 2.5, Ko = 5, Pn = 0.6 and Ki, = 0.9. 

The latter two were computed with an accuracy of 

five correct symbols, which to some degree was useless, 

because such an accuracy is not necessary when 

drawing the graphics. 
Figures 1 and 2 represent the fundamental case: 

Lu = 0.4, E = 0.2, Bi, = 2.5. The distributions, shown 
in these figures, are represented in [l] through only 

one graphic because there the potentials are related 
linearly with a proportionality factor (1 + E LuKoPn)/ 

(LuPn) = 5.166.. . for the case under consideration; 

this means that T(X, Fo) = 5.1668(X, Fo). This linear 
relation is not corroborated by our results. 

In [l] it is pointed out that the possibilities of 

comparison of the analytical results with experimental 

data in literature are very restricted because of the 

scarcity of such data. That is why Bruin announces 
about his own experiments, where the experimental 
curves show an inflection point in the moisture 

potential distribution. This phenomenon is predicted 
by our solutions and can be found in Fig. 2 for values 
of Fo = 0.05 and 0.1. 

For small values of the nondimensional time the 

distribution of the potentials is particularly unstable 

: 

c-o.2 ~ L” . 0.4 

2.0 
c.0.4 -.-,- #i,.@(o&2.5 

::y* ZIzIz f$ :i;.6 

Ki,. 0.9 

I.8 

l-6 

.4 

8 

6 

4 

-2 

0 

FIG. 4. Influence of the phase change criterion (E = 0.2,0.4, 
0.8 and 1) on the moisture transfer potential distributions 
for Lu = 0.4, E = 0.2, Bi, = Bi, = 2.5, Ko = 5, Pn = 0.6 

and Ki, = 0.9. 



20 M. D. MIKHAILW and B. K. SHISHEDJIE\ 

0 c 
ts’ 
m 

0.6 

t 

Fo = 0.2 
I 

--- ---- 
A' 

X 

FIG. 5. Influence of Biot number for mass transfer (Bi, = 1, 
2.5,5 and 10) on the temperature distributions for Lu = 0.4, 

E = 0.2, Bi, = 2.5, Ko = 5, Pn = 0.6 and Ki, = 0.9. 

and is characterized not only by a moisture, but also 

by a temperature wave. The latter can be seen from 

the graphics for values of Fo = 0.05 and Fo = 0.10, 
which are shown on Fig. 1. 

Figures 3 and 4 represent the influence of the phase 
change criterion. In [l] this influence is shown for only 
one value of Fo and the following conclusion is drawn: 
“a low value of E gives higher temperatures in the 

material, because less heat is needed for evaporation of 
moisture”. From Fig. 3 it is obvious that this conclusion 

is true only for large values of Fo. For small values of 
the nondimensional time the conclusion is correct only 
for this region of the plate which is disposed close to 
the hot plate, while for the area near the free surface 
the effect is just the opposite. It is interesting to note, 
that the change described occurs in a point, which 
moves in time towards the free surface and in our case 
reaches it when Fo = 3.2. 

The moisture potential shown in Fig. 4, behaves in 
an analogous way and for large values of the non- 
dimensional time (Fo > 0.8) the point of change is to be 
found for both distributions an approximately equal 
distance from the free surface. 

_ I.0 

9 

*(oe 

2 
--___-- 

--- 

0.6 

-0 2 I I I / I I 
0 02 o-4 06 06 I.0 

X 

FIG. 6. Influence of Biot number for mass transfer (Bi, = 1, 
2.5,5 and 10) on the moisture transfer potential distributions 
for Lu = 0.4, E = 0.2, Bi, = Bi, = 2.5, Ko = 5. Pn = 0.6 

and Ki, = 0.9. 

Figures 5 and 6 represent the immense influence of 

Bi, both on temperature and moisture fields. Excep- 
tionally interesting is the change of place of the 

temperature lines. In order to realize the prescribed 
large values of Bi, for small values of Fo one can 

observe temperatures even lower in comparison to the 
initial ones. This is not contradictory to logics, because 
the heat income in the beginning is not enough and 

the prescribed evaporation can occur only at the 
expense of cooling of the capillary-porous plate. On the 
whole Bi, influences the process chiefly in the 
beginning. 

Figures 7 and 8 represent results for Lu = 0.02 and 
Bi, = 2.5 and 5.0. These figures once again show that 
there is not similarity between the two distributions. 

They confirm the well-known fact [2], that Luikov 
number substantially affects the distributions. For 
small values of Lu the temperature field develops much 
more rapidly in comparison with the moisture one. 

The present investigation shows that quite a complex 
mechanism is hiding behind the exterior simplicity of 

the process of drying. Its investigation should be 
performed only on the basis of Luikov’s system without 
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16- 

-0 2 I I I I I 
0 o-2 04 06 06 10 

X 

FIG. 7. Influence of Biot number for mass transfer (Bi,,, = 2.5 
and 5) on the temperature distribution for small value of 
Luikov number (Lu = 0.02) and E = 0.2, Bi, = 2.5, Ko = 5, 

Pn = 0.6 and Ki, = 0.9. 

any simplifications of the latter, because the simplifying 
assumption of Makavozov that the moisture movement 

under the influence of moisture potential gradient is 
negligible, leads to qualitatively untrue picture of 
temperature and moisture distributions. 
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APPEWIX A 

Subject of this Appendix is the obtaining of an exact 
analytical solution oi iuikov’s system - 

BT(X, Fo) 
p= 

dFo 

?T(X, Fo) EKO 30(X, Fo) 

8X2 - 3Fo 

8(X, Fo) 
___ = Lu 

&l(X, Fo) ___- 
dFo 2X2 

LuPn a2T(X, Fo) 

3X2 

under the following initial and boundary conditions: 

T(X, 0) = 0(X, 0) = 0 

aT(O, Fo) 
-= -Ki 

dX 4 

“(O’ F”) _ _ PnKi 
8X 4 

1 aT(1, Fo) 
T(l.Fo)-(1-a)Ko+(l,F~)+~~ 

g 4 

= l-(lbe)KoLuBi” 
Sip 

Pn CT(1, Fo) 1 cW(l,Fo) 
e(l,Fo)-Bi~+----= 1. 

fn Bi, 3X 

(14 

(24 

(3N 

(4A) 

(5.4) 

(6.4) 

(7A) 
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This problem is a particular case of the recently published 
general solution [7]. The numbers in curly brackets refer to 
the equations of [7]. 

The comparison of equations (4A) and (5A) with equation 
(37) shows that for the case under consideration: 

A(0) = 1; B(0) = 0; 

Rr(0. Fo) = -Ki,; C&(0, Fo) = -PnKi,. 
(84 

From an analogous confrontation of the boundary con- 
ditions (6A) and (7A) with equation 136) it follows that: 

KII = 1; 
Bi, 

ICI2 = -(l -&)KoLu--; 
Bi, 

1 
K13 = -; 

Bi, 
Kr4 = 0; 

Pn 1 
Ksr=O; Kz2=1; Kz3= ---; &=-; 

Bi, Bi, 

R,(l, Fo) = 1 -(l -e)KoLu$; &(l, Fo) = 1. (9A) 
4 

With the help of (9A) and {45}, and having in mind that 
(92 - 1) (gf - 1) = - EKoPn, one can calculate the co- 
efficients: 

Lrr =(92-l)1+(1-gz)I--ELu~. 2 1 
E Biq ’ 

LIZ= -(p-l) 1 
[ 
l+(l_S~)l-ELuBi, 

I 
2 

E Bi, ’ 

L13 = 
9:-l 
---; L,‘$ = - 

9:-l 

Bi, 
y; 

Bi, 
Lz, = -Pn; Ltz = Pn; 

8: 9: 
Lz3 = -Pn-; L*‘$ =Pn--. 

Bi, Bi, 
(104 

The required solution for T(X, PO) and 0(X, Fo) are given 
by equations {41} and {42}, whichcan be written in the form: 

T(X, Fo) = &i (-l)‘(1_9:-j)Zj(x,Fo) (llA) 
IJ 1 

0(X, Fo) = (12A) 

where according to equation {40} : 

2 4 * 
x l+eKoPn++; -L- 

.>I 
; j=1,2. (13A) 

The potentials Z,(X, Fo) are determined from the system 
{39}, {44} and (46). For the case under discussion, having in 
mind (3A), (8A), (9A) and (lOA), one gets: 

3z c?Z,(X, Fo) PZ,(X, Fo) 
J 

-= 
2Fo 8X2 ’ 

j=1,2 (t4A) 

Zj(X, 0) = 0, j=l,2 (15A) 

c?Z,(O, Fo) 
___ = - Ki, 9;, 

8X 
j=1,2 (16A) 

The obtained problem (14A)-( 18A) is a part of the genera1 
one-dimensional case 147).-j50), whose solution (541 for 
the case considered, has the form: 

I 
g(0) 

Z,(X,Fo) = Z?(X)- 1 G,-z-$,~i(X)e-~~FU (19A) 
I=1 /Ii 

where +j,i(X) is defined by equations (51}-{53}, Gi by 
equation {55},g(O) by equation { 56) and Z:(X) by equations 
{57}-(59). 

Equations {51}-(531, generating the eigenfunctions and 
eigenvalues, take the form: 

$;(x)+$S;$JX) = 0, j= I.2 (20A) 

r&(O) = 0. ,j= I.2 (2lA) 

i (- l)J(l-9:_,) 
j=l 

x (22A) 

(23~) 

The solution of the system (20A) is 

ii(X) = Cjcos(3j~X)+Djsin(3j~X) (24A) 

where Cj and Dj are constants, which are to be determined. 
From the boundary conditions (21A) it follows that 0, = 0. 
Substitution of (24A) into (22A) and (23A), and having in 
mind that 9:3:_, = l/Lu, gives: 

i (- I)‘(1 -9:_j)aj(p)c, = 0 (25A) 
,=I 

where 

C (-l)'bj(p)Cj = 0 WA) 
j=l 

uj(p)= 1+(1-3$<Lr,;+ 
[ 4 I 

x cos(:J,p) - $! sin(,Yjp) (27A) 
4 

(28A) 

The system (25A)-(26A) has Cj as a non-zero solution 
when : 

(1 -~:)~IW&O-_(~ - %hW,(j4 = 0. (29~) 

The obtained characteristic equation {29} defines an 
infinite series of eigenvalues 

/I, < /I(z < < pi < 
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From equation { 12) and using (lOA), one gets: 

‘T~-~ = (-l)j+l$ cj 

3 , 

where 

(30A) 

It follows then from equation { 55) for Gi that 

where 

dj(pi) = 1 + 
sin(Sjpi) 
~ cos(9jji). 

$jPi 

(33A) 

After some simple mathematical transformations of {56), 
one gets: 

s(O) = -cl 
Pn(9: - 9:) 

bzh) 

+ 1-(1-s)KoLu~ b(p) 
Bi, 1 ’ ’ 

g-1 
+- Pn 

After substitution of (24A), (32A) and (33A) in the 
solutions (19A) and having in mind (26A), one obtains 

zj(X, F") 

= Z:(X)-(9:-9:) f Aib,_j(pJcos(SjpiX)e-~~~~ (35A) 

where 

i=1 

& [M4c2 - b,(Ac,l 

+ 1 -(I -s)KoLuSi” 1 Bi, 
b (p) ’ ’ 

g-1 
+ Pn am 

B(X,Fo)= l+PnKi,(l-X)+Pn 5 Aie-P:Fo 
i=1 

X (- l)jb,(~3Cos(93-j~ciX). (39A) 

APPENDIX B 

Let us find the solution of Luikov’s system 

(7T(X, Fo) PT(X, Fo) 20(X, Fo) 

o’Fo IX2 - 
EKO ____ 

EFo 
(1W 

dO(X,= Lu 2’O(X, Fo) 
_______- LuPn 

S’T(X, Fo) 

(7Fo (7X2 ;X2 ’ 

0 <X < zo, Fo >O (2B) 

under the following boundary conditions 

T(X, 0) = 0, 0(X, 0) = 0 (3B) 

dT(0, Fo) 

8X KI, 

w”, F”) _ _ fInKi 

FX 4 

(4B) 

(59 

T(m. Fo) # m, @co, Fo) # cc. (W 

In [Z] after applying Laplace’s transform to equations 
(1B) and (2B) and having in mind the initial condition (3B), 
the following image of the solution is obtained: 

r(X, s) = Al exp(9, X 4s) + A2 exp(& X,/s) 

+A3 exp( -9,XJ~)+A,exp(-9~X\/s) (7B) 

B(X, s) = & [A,(@ - 1) exp(&X,/s) + A2(3: - 1) 

x exp(9,XJs)+A3(@-l)exp(-9,XJs) 

+A,(# - 1) exp( -92XJs)] (88) 

where 

x {b:(~(i)c2dl(~i)-b:(~i)Cld2(~(i)}-1. (36A) 

The quasistationary solution Z?(X) is obtained through 

2 

x l+EKoPn+& -& 

> II 
(9B) 

direct tackling ofequation {57j under conditions {58j-{59j 
and for the case considered, it has the form From the boundary conditions are determined the 

Z,o(X) 
constants AI, AZ, A3 and A4. Hence the solutions (7B) and 
(8B) take the form: 

=l+Kiq(l+~)-(l-~~)(~+Ki~)-Ki~~~X. (37A) ?;(X,s)_B2K_lb~~~iS:_l)exp(-9,X~s) 

After substitution of (36A) in (35A) are obtained the 
2 1 sjs 

required potentials Z,(X,Fo) and hence from equation cxp( - Q2 X Js) 

(11A) and (12A) the final solution of the problem: 
-9,@-l)- 

SJS 

T(X,Fo)= ,-Ki~(l+~-X)-~~Aie-Y:” 

(lo@ 

2 

x 1 (- 1)‘(9; - l)bj(pi)cos(93_jpiX) (38A) 
i=1 

+9 
2 

exp(-Q2X JS, 

I SJS 
(11W 
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The inverse Laplace transform ol’(lOB) and (I I Bl gives 

(12B) 

DISTRIBUTIONS DE TEMPERATURE ET D’HUMIDITE PENDANT 
LE SECHAGE DUNE COUCHE DE MATERIAU HUMIDE 

Resume--En employant le systtme d’equations differentielles obtenues par Luikov, on etudie le sechage 
dune couche de materiau en contact avec une plaque chaude. Dam cet article est trait6 le probleme 
deja considere par Bruin [l] avec l’hypothtse simplifiee, de I’influence negligeable du gradient de 
potentiel d’humiditt sur le transport de I’humidite. L’analyse presentee ici est basee sur la solution 
analytique exacte. L’influence des parametres sans dimension sur les distributions de temperature et de 

potentiel d’humiditt est illustrte par des exemples numtriques. 

TEMPERATUR- UND FEUCHTIGKEITSVERTEILUNG BE1 KONTAKTTROCKNUNG 
EINER FEUCHTEN PORIGEN SCHICHT 

Zusammenfassung- Mit Hilfe des Luikovschen Differentialgleichungssystems wird die Trocknung einer 
Schicht feuchten Materials, die sich in Kontakt mit einer Heizplatte befindet, untersucht. In dieser Zeit- 
schrift wurde dieselbe Aufgabe von Bruin [l] mit der Vereinfachung betrachtet, dal3 die Feuchtigkeits- 
bewegung unter dem Einfluss des Druckgradients vernachlassigbar klein ist. In der vorliegenden Arbeit 
wird die genaue analytische Losung zum Analysieren des Problems, ohne die obenerwahnten Einschran- 
kungen. angewandt. Der EinfluD dimensionsloser Parameter auf Temperatur- und Feuchtigkeitsverteilung 

wird durch numerische Beispiele gezeigt. 

PACIIPEjJEJIEHHE TEMfIEPATYPbI I4 BJIAFOCOfiEPXAHBR I-IPki KOHTAKTHOB 
CYIIIKE BJIAXHOFO ITOPHCTOf’O CJIOR 

sklIfOlWllH-~ I-IOMO~bM CHCTeMbI J(H@&pCHUWaJIbHbIX ypaBHeHHi% nbIKOBa %iCCJIC~OBaHa CyIIlKa 

cno~ BnamHoro MaTepHana, riaxonxmerocsi B KoIfTaKTe c ropsfeii nnaccuHoi. 3Ta me 3aasa 

peruanacb Iipyli~0~ [i]npw ynpoIqaro4eM ,qonylqeHwH 0 T~M,~TO nepeHoc Bnani non BnHnfixieM 

rpanueHTa noTeHqua_na BJIarOnepeHOCa npeHe6pexcHMo MaJI. Ai~~b1i4 a~a~rH3 npoBeAeH Ha OCHOBe 

TOYIiOrO aHaJIEiTH¶eCKOrO peIUeH&Ul 6e3 yIIOMXHyTOr0 OrpaHH'IeHWI. Bnumae tk3pa3MepHbIX 

napaMeTpoB Ha pacnpeneneHHe noTeHsuanoB Teh5xepaTypbI w BnarownepxaHAa 5innIocTpsipyeTcsi 

'IWCJICHHbIMA llpHMepaMli. 


