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Abstract— Using Luikov’s set of differential equations, the drying of a layer of moist material in contact

with a hot plate is investigated. In this journal the same problem is studied by Bruin [1] with the

simplifying assumption that the moisture movement under influence of moisture potential gradient is

negligible. The present analysis is based on an exact analytical solution without the mentioned restriction.

The influence of dimensionless parameters on the temperature and moisture potential distributions is
illustrated by numerical examples.

NOMENCLATURE
Dimensionless criteria

Fo = a,7/D?, Fourier number;
Lu = ap/a,, Luikov number;
Bi, = a,D/4,, Biot number for heat transfer;
Bi,, = o,,D/A,, Biot number for mass transfer;

TCm( B0 — Os .
Ko= ren(fo—6) , Kossovitch number;

cq(ts —t 0)

O(ts—t
Pn= Sty ,  Posnov number;

Cm(00 - 0‘)
g, phase change criterion;

t—to . .
T(X,Fo) = o dimensionless temperature;
s~ L0
bo—0 . . .
0(X, Fo) = o dimensionless moisture transfer
0™ potential;

X =x/D, dimensionless coordinate;
where
X, coordinate perpendicular to the surface [L];
t, temperature [°C];
0, moisture potential [°M];

T, time [T];

a,, thermal diffusivity coefficient [L>T'];

an, diffusion coefficient of moisture in the
material [L2T~'];

r, specific heat of evaporation [L2T~2];

8, thermal gradient coefficient [°C™!];

¢m,  specific isothermal mass capacity of the
material ["M~'];

Cq> specific heat capacity of the material

[L2T—20C—1];

15

#,,  heat-transfer coefficient [mT~3°C™!];
n,  mass-transfer coefficient [mL 2T '°M !];
A4, thermal conductivity [mLT 3°C~1];
Ams  moisture conductivity [mL~'T"1*M™'];
¢y,  heat flux [mT~3];
D, thickness of the layer of moist material [L];
, D¢, . .
Ki, = m, dimensionless heat flux.
g\ts )
Subscripts
0, initial;
s, surroundings;
*, in equilibrium with surrounding air.

1. INTRODUCTION

AN EXACT computation of temperature and moisture
distribution when drying porous bodies can be accom-
plished through numerical solution of the well-known
Luikov’s system of coupled partial differential equa-
tions. Such an approach has not found wide application
chiefly because there is not enough data about the
dependance of the heat-transfer parameters on moisture
and temperature. The information about the tempera-
ture and moisture distributions, obtained in this way is
true, but it is valid only for concrete material under
given conditions of drying.

Taking an average for the heat-transfer parameters,
the system, mentioned above, can be linearized [2]. In
this case the results obtained and the results expected
do not coincide so well, but on the other hand it is
possible to make a quantitative analysis of the influence
of the nondimensional parameters on temperature and
moisture changes. The results obtained through such an
approach are universal. That is why many investiga-
tions were made on the base of the linearized system [3].
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A study of temperature and moisture distributions
during contact drying of a sheet of moist material was

" ad hv R Ha d a
presented by Bruin [1]. Having in mind the great

practical importance of this paper, it was discussed in
detail in [4].

Because of mathematical difficulties, arising from
assymmetry of boundary conditions Bruin did not
succeed in finding an exact analytical solution of the
problem. That is why he used the simplifying assump-
tion of Makavozov [5-6], that is that the moisture
pOlCnlel gTdUlCI]l UUCb not lllllut:llht: All_le movement Ul
moisture, assuming that Lu(¢20/0x?) = 0.

This simplification of the linearized system is in-
admissible. It leads to similar distributions of moisture
and temperature potentials, thus reducing Luikov’s
system to a single partial differential equation. That
is why the Laplace image of the solutions contains
only two constants, when there are four boundary
conditions for their satisfaction. That was the reason
why Bruin next united incorrectly the boundary con-
ditions thus Bi,, being excluded. But Bi,, is a parameter
with immense influence on the moisture distribution
and hence on the temperature distribution.

Our opinion is that Bruin’s graphics give not only a
quantitively but also a qualitively untrue picture of
temperature and moisture fields. To substantiate this
opinion in the present work we give an exact analytical
solution of Bruin’s problem, on the base of which the
examples in [1] (Fig. 2a. b. c) are calculated. It was not
difficult to obtain such an exact solution, because it is

contained in the recently published general solution
r-i

L7]

2. STATEMENT AND SOLUTION OF THE PROBLEM

In [1] (see Fig. 1, p. 46) Bruin analysed the contact
drying of a moist porous sheet on a hot plate
Temnerature and moisture distributions is described

2CINPETAiUIe a1Q IO LLIC CHNIDRVIL

by Luikov’s system

" — Ko 1

Fo xR 1)

BX.Fo) _, 0K Fo) . PTKXFo)
= LU —iurn

aFo X2 ox? (

Equations (1) and
conditions:

(2) are subjected to the following

Initial condition:

x
»
=
o]
“

Heat flux through the hot plate:

a1 o, FO)
)¢ T

(4)

Mass balance on the surface of the hot plate

al n )

0O Fo) -, ¢TO.Fo) o (5)
X X
Heat balance on the free surface:
T, Fo

&/X)-Biq[l— T(1, Fo)]
¢ L1 K AT R T 1 FaYl = 0 (&)
Tl [ 23N ULAMJJlmLJ Ui, Uy = v. Uy

Mass balance on the free surface:

5(?(],F0)+P 5T(l,F0)+
— n
X cX

Bi,[1-6(1,F0)] =0. (7

The exact analytical solution of the system (1)—(2)
under the initial condition (3) and the boundary con-
ditions (4)—(7) is obtained in Appendix 1 and has the

form:
1l x)-
\ qu / i

2
x 3 (~1Y(87 = Dby) cos(93 -1 X) (8)

Aiﬁil";[;o

F"JB

1

2
W
X

0(X.Fo)=1+PnKif(1-X)+Pn Y A;e-#iro

i=1

2
x Z (= 1Ybi(u)cos(93-;4: X) (9)

where

—

{ 1
ngz = — 1+£KOPn+z—+(——l)j

2
\/ Lkl +eKoPn +—

Ai=— 2 jﬁKl [bz(#}CZ*bﬂM) 1]
t 1. 1.
u? 93— 9

(10)

K__I
—

2

+9 adu)lb(u)}
biu

X {bz( Jeady (1) — .)Cldz(/li)}_l (11)
a;(;) = [1+(1—92)TL %ﬂ}
q

ity .
x cos (P ;) — ———sin(9; ;) (12)
Bi,

bj(1y) = cos(9; ) — sin(8; ) (13)

Lu B )
{1\ KoP
G=0F-(5 - |-t (9
Bi, LuBiy, Bi,
sin(9; i
i) = 1 +—(’—“—)cos(9, ). (15)

jHi
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The y; are the positive roots of the characteristic
equation f(y;) = 0, where:

flw)=0Q —9%)01(}4:')172(#1')—(1 —Sf)az(#i)bl(#i)- (16)

The roots of this equation were calculated with an
accuracy of seven correct symbols using the method of
dividing the interval into halves. The comparison of
the signs of F(u) at the ends of the consequent intervals
with length A gives the interval, where a root is supposed
to exist. The presence of different signs is an indication
for the existence of a root in the corresponding interval.

A substantial defect of this simple method is the
possibility of omitting roots when choosing too large
a step h. After a numerical experiment we chose as a
most appropriate step h = 0-02, but it does not
guarantee the omission of roots.

In Table 1 are given the first twenty-five roots of
equation (16) with five correct symbols after the decimal
point for some of the cases analysed. The utility of
publishing of detailed tables of roots is doubted because
their calculation each time is considered to be more
convenient than their being introduced as input data in
a computer. Table 1 is supposed to serve as an
appliance to those investigators, who would wish to
program our solution.

Table 1. Roots of equation (16)
Lu=04,Pn=06Ko=35Bi,=5

Table 1. {(continued)

. e=02
/i Bi,, = 1 Bi,, =25 Bin =5 Bi, = 10
1 0-51519 0-63831 0-69360 0-72335
2 1-34300 361562 370757 378244
3 179173 436375 473523 698336
4 352453 511397 491463 10-32595
5 422759 691995 694944 1372017
6 5-16807 7-71052 787753 1713578
7 689770 8-55753 8-48721 20-56010
8 762573 1031443 1031890  23-98821
9 8-58915 11-22749 11-34959  27-41802
10 1031135 1199226 1194316  30-84856
1 1116115 1373204 1372768 32:60510
12 1201553 1479911 1490019  32:93866
13 1373489 1542423 1538302  34-27936
14 1474381 17-15704 17-14951 36:01884
15 1544358 18-39636 1848794  36:57647
16 17-16181 18-85436 18-81354 3771014
17 1834788  20-58487  20-57632  39-44282
18 1887225 2200971 2211613 4020748
19 2059016 2228135 2221891 4114069
20 2196365 2401393 2400522  42:87024
21 2230093 2744357 2743504  43-83796
22 2401923 3087351 3086529  44-57075
23 2558828  32:59780  32:60072  46:29918
24 2572771 32:85158 3287995  47-46984
25 2744870 3430361 3429571 4799976

R e=04
B -1 Bi,=25 Bip=5  Bi,=10
I 049959 060870 065670 068259
2 134721 327246 334800 343193
3 169665 626861 628007 630273
4 320967 784823 789435 794972
S 626174 839195 849463 873540
6 781258 934485 933168 929293
7 833908 1091057 1092161 1094124
§ 935150 1400474 1400620 1400918
9 1090351 1556504 1557705 1559657
10 1227194 1626407 1632291 1644665
11 1244475 1710395 1709854 1708507
12 1400388 1866226 1866573 1867237
13 1555698 2176506 2176527 2176570
14 1622997 2332121 2332580 2333407
15 1710688 2423847 2428127 2436948
16 1866012 2486806 2486398 2485383
17 2176494 2642478 2642631 2642932
18 2331830 2798513 2799496 2800944
19 2421321 2822910 2825572 2831408
20 2487026 2952982 2952066  29-52932
21 2642386 3108479 3108702 3109123
22 2797818 3224241 3227725 3235056
23 2821419 3263355 3262892 3261615
% 2952991 3419026 3419105 3419263
25 3108341 3574585 3574950 3575587

Ji e=08
Bi,=1  Bi,=25  Bi,=S  Bi,=10
I 047217 056011 059744 061754
2 134923 289373 207822 307664
3156302 420726 429142 437686
4 282690 529285 685330 692607
S 413418 538607 819809 826442
6  S11142 681454 1084592 1089357
7 545586 815659 1219444 1224075
§ 679104 1082354 1354706 1359208
9 812897 1216937 1415944 1426027
10 947411 1351774 1486293 1489580
11 952488 1410957 1621477 1624946
12 1081071 1484915  17-56219  17-59594
13 1215381 1619714 1877126 2027114
14 1349775 1754347 1886232 2161777
1S 1408092 1870734 2024370 2297085
16 1484166 1887321  21-59084 2338183
17 1618652 2023031 2204318 2429856
18 1753165 2157676 2332264 2564652
19 1867239 2292579 2427626 2699378
20 1887654 2329531 2562412 2799579
21 2022241 2426587 2697161 2832543
22 2056814 2561279 2794214 2967876
23 2201410 2695961 2830859 3102550
3 2327993 2791393 2965963 3238121
25 2425987 2830183 3100663 3258617
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From physical considerations it is clear that for
small values of the nondimensional time (Fo < 0-05)
and close to the initial surface (X = 0) the results
obtained through solutions (8) and (9) are supposed to
coincide with those, obtained from the solutions for a
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semispace, subjected to the same influences. Such
solutions are given in Appendix 2.

2(Fo)lKi, 2 .
2 _1 J
9197 Y (=1

=1

1 8x I\
_¥l()' 27>_1 —_ 7*‘1
X[ e ’e"p< [ﬂFo)*D
X (1 9,X
2 (e Vet 2 Y| a7
3 Foyt (Lu -’)em(z(m%] 17

2(F05K1
51 - Zl(—l

J

%x
X Lf % exp(— [2’(1:0)%}>
9; X
G2 e
3 erfc<2(F0)%>:|‘ (18)

The possibility of omitting roots in calculating g
made us program the solutions (17)-(18). The correct-
ness of the results given in the present paper was
controlled through them.

T(X,Fo)=

0(X, Fo}) = Pn

T 2(Fo)

8, (x, Fo)

X

Fig. 1. Dimensionless temperature distributions during
contact drying for Lu=104, &¢=02, Bi,= Bij=25
Ko =5, Pn=06and Ki, = 09.

3. DISCUSSION OF RESULTS AND
NUMERICAL EXAMPLES
The temperature and moisture distributions were
calculated in terms of following set of variables [1]:

Lu=04,002; ¢=0204,08.10
Pn=006; Ko=50; Ki,=09; Bi,=25;
Fo =0-0501,0204,08 16,32, 64.

From the thermodynamical point of view the heat
and mass transfer is not equiprobable for arbitrary
values of Lu and ¢KoPn [2]. For small values of Lu
values of ¢KoPn < 0-3 are supposed to be more
probable while if Lu > 0-3 then e KoPn > 0-4.

In our examples ¢KoPn > 0:6 and, consequently
Lu =002 is more or less improbable. Aiming the
comparison of our results with the ones, given in [1],
we calculated such an example too.

In contrast to [ 1] for Fo the value 0-2 is added and
the value of the phase change criterion ¢ = 0-6 is taken
to be 0-4. This change is made because from known
experimental results ¢ varies in the intervals 0-0-0-4
and 0-8—1-0. In [2] it is stated that the experiments of
Polonskaia and Lebedev show that for a gypsom plate

20 Ly =04
e =02
Bi,=Bi,=2-5
18— Ko =5
Pn =06
Ki, =09

B8 (X,Fo)
<
(2]
: [

S 02 “_#///
S o005
-2l J_ H
Q 04 )6 08 -0
X

FiG. 2. Dimensionless moisture transfer potential distribu-
tions for Lu=04, £=02 Bi,=Bi,=25 Ko=35
Pn =0-6 and Ki, = 0-9.
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& = 0-045; for clay 0-75-1-0; for sand 0-2-0-4 and for
wood 0:09-0-2.

The heat- and mass-transfer criterions of Biot in
real conditions depend on each other. This interrelation
is established through the balances of heat and mass.
The change of Bi, implies a change of Bi, and their
numerical values are of approximately the same order
[2].

Taking into account the fact that Bi, is not present
in the solutions, given in [1], in our fundamental
examples we accepted it to be equal to Bi, = 2-5. In
order to investigate the influence of Bi,, its values
were varied according to examples, given in [2], as
follows:

Bi,, = 10,2-5,5-0,10-0.

On the basis of solutions (8)-(16) an ALGOL
program for computation of T(X, Fo) and (X, Fo)
was prepared. Although Table 1 gives only the first
twenty-five roots in our program this number is
determined automatically so that the prescribed
accuracy for the computation of the temperature and
moisture distributions is guaranteed.

8,(X,Fo)

F1G. 3. Influence of the phase change criterion (¢ = 0-2, 0-4,
0-8 and 1) on the temperature distribution for Lu = 0-4,
& =02, Bi,, = Bi; =25, Ko =5, Pn =06 and Ki, = 0-9.

The latter two were computed with an accuracy of
five correct symbols, which to some degree was useless,
because such an accuracy is not necessary when
drawing the graphics.

Figures 1 and 2 represent the fundamental case:
Lu =04, ¢ =02, Bi, = 2-5. The distributions, shown
in these figures, are represented in [1] through only
one graphic because there the potentials are related
linearly with a proportionality factor (1+&LuKoPn)/
(LuPn) = 5-166...for the case under consideration;
this means that T(X, Fo) = 5:1666(X, Fo). This linear
relation is not corroborated by our results.

In [1] it is pointed out that the possibilities of
comparison of the analytical results with experimental
data in literature are very restricted because of the
scarcity of such data. That is why Bruin announces
about his own experiments, where the experimental
curves show an inflection point in the moisture
potential distribution. This phenomenon is predicted
by our solutions and can be found in Fig. 2 for values
of Fo =005 and 0-1.

For small values of the nondimensional time the
distribution of the potentials is particularly unstable

€02 u
2.0l €04 ———— Bi,~8i+25
€208 ———— Ko =
€| n =06
Kig=0-9
1-8—
I-6—

8,(X,Fo)

F1G. 4. Influence of the phase change criterion (¢ = 0-2, 0-4,

0-8 and 1) on the moisture transfer potential distributions

for Lu=04, ¢ =02, Biy,= Bi, =25 Ko=5, Pn =06
and Ki; = 0-9.
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8,(Xx,Fo)

o-af-
02|
DS
ol >~ Fo=02
~ T e—
~ ~
| = |
[¢] 02 0-4 06 o8 1-0
X

FiG. 5. Influence of Biot number for mass transfer (Bi, = 1,
2-5, 5 and 10) on the temperature distributions for Lu = 0-4,
e=02 Bi,=25 Ko=35,Pn=06and Ki, =09

and is characterized not only by a moisture, but also
by a temperature wave. The latter can be seen from
the graphics for values of Fo = 0-05 and Fo = 0-10,
which are shown on Fig. 1.

Figures 3 and 4 represent the influence of the phase
change criterion. In [ 1] this influence is shown for only
one value of Fo and the following conclusion is drawn:
“a low value of ¢ gives higher temperatures in the
material, because less heat is needed for evaporation of
moisture”. From Fig. 3 itis obvious that this conclusion
is true only for large values of Fo. For small values of
the nondimensional time the conclusion is correct only
for this region of the plate which is disposed close to
the hot plate, while for the area near the free surface
the effect is just the opposite. It is interesting to note,
that the change described occurs in a point, which
moves in time towards the free surface and in our case
reaches it when Fo = 3-2.

The moisture potential shown in Fig. 4, behaves in
an analogous way and for large values of the non-
dimensional time (Fo > 0-8) the point of change is to be
found for both distributions an approximately equal
distance from the free surface.

Bir |

Bfezs———— Y153
gf}s bt 7
10 — — — — Ko =
2 0f e 10 Po o6
Kia=0-9

8,(x,Fo)

FiG. 6. Influence of Biot number for mass transfer (Bi, = 1,

2-5,5and 10) on the moisture transfer potential distributions

for Lu=04, ¢=02, Bi;=Bi,=25 Ko=35 Pn=06
and Ki, = 0-9.

Figures 5 and 6 represent the immense influence of
Bi,, both on temperature and moisture fields. Excep-
tionally interesting is the change of place of the
temperature lines. In order to realize the prescribed
large values of Bi, for small values of Fo one can
observe temperatures even lower in comparison to the
initial ones. This is not contradictory to logics, because
the heat income in the beginning is not enough and
the prescribed evaporation can occur only at the
expense of cooling of the capillary-porous plate. On the
whole Bi, influences the process chiefly in the
beginning.

Figures 7 and 8 represent results for Lu = 0-02 and
Bi,, = 2:5 and 5-0. These figures once again show that
there is not similarity between the two distributions.
They confirm the well-known fact [2], that Luikov
number substantially affects the distributions. For
small values of Lu the temperature field develops much
more rapidly in comparison with the moisture one.

The present investigation shows that quite a complex
mechanism is hiding behind the exterior simplicity of
the process of drying. Its investigation should be
performed only on the basis of Luikov’s system without
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Bi=25 Ly »002
865 —— —— =02
Big=2-5
2-0 Ko *5
Pn <06

Kiy=0-9

8,(x, Fo)

F1G.7. Influence of Biot number for mass transfer (Bi,, = 2-5

and 5) on the temperature distribution for small value of

Luikov number (Lu = 0-02) and ¢ = 0-2, Biy =25 Ko =35,
Pn =06 and Ki, = 0-9.

any simplifications of the latter, because the simplifying
assumption of Makavozov that the moisture movement
under the influence of moisture potential gradient is
negligible, leads to qualitatively untrue picture of
temperature and moisture distributions.
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APPENDIX A
Subject of this Appendix is the obtaining of an exact
analytical solution of Luikov’s system

dT(X,Fo) _&*T(X, Fo) 20(X, Fo) (1A)
oFo ox? sRo dFo
(X, F »*0(X, F *T(X, F
(X.Fo) _ JOXFO) ) py ST FO) )
éFo ox? ox?
under the following initial and boundary conditions:
T(X,0) = 8(X,0) =0 (3A)
dT(0, Fo) Ki @a)
oL ro) ki
X 4
30(0, Fo) )
——5‘)(— = —PnKlq (SA)
T(L, Fo)—(1 —&)KoLu 2™ (1, Fo) 4 — O 10 FO)
o oot TR Tax
Bi,,
=1—-(1—¢)KoLu— (6A)
Bi,
T, F 1 1.F
o(1, Foy— Ln T Fo) | 1 201 Fo) )

Bi, 0X Bi, 0X
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This problem is a particular case of the recently published
general solution [7]. The numbers in curly brackets refer to
the equations of [7].

The comparison of equations (4A) and (5A) with equation
{37} shows that for the case under consideration:

AO)=1: B0)=

Q(0, Fo) = —Ki,; Q,(0,Fo) = ®4)

—PnKi,.

From an analogous confrontation of the boundary con-
ditions (6A) and (7A) with equation {36} it follows that:

Bi,
Kin=1; Ki»=—(1—e)KoLu—";
Bi,
Kis=—: K, =0
13—Biqs 14 — Y,
Ky=0: Kp=1; K Pno =L
21 — VY 22 — 1, 23 — Bim, 24 — Bims
Bi,,
(1, Fo) = 1—(1—s)KoLuB—.; Q,(1, Fo) = 1. (9A)
1

q

With the help of (9A) and {45}, and having in mind that

(% —-1)(93—1)= —eKoPn, one can calculate the co-
efficients:
1- Bi,,
Ly = @3~ DI+ (-89 —Lu=";
e Bi,
1— Bi,,
L= —(8- 1)[1‘*(1"9%)"81‘“"._}
& Bi,
%51 si-1 L Pn; Ly, =P
= ; == ; = —Pn; L;; =Pn;
13 Biq 14 Biq 21 n 2
SZ 82
Ly = ——PnB—_:; Lo = Pnkiim. (10A)

The required solution for T(X, Fo) and 0(X, Fo) are given
by equations {41} and {42}, which can be written in the form:

1
T(X, Fo) = ZZ (—1y(1-93_ NZi(X, Fo) (11A)
9 91_, 1
0(X, Fo) = Z —1YZ(X,Fo)  (12A)
where according to equation {40}:
92 L 1+KP+1+( 1y
P = eKoPn+—+(—
T2 Lu
12 4\t
x| |1+eKoPn+— ——] 1, j=12. (13A)
Lu L,

The potentials Z(X, Fo) are determined from the system
{39}, {44} and {46}. For the case under discussion, having in
mind (3A), (8A), (9A) and (10A), one gets:

6Z(X,F 0?Z(X, F

Z{X,00=0, j=12 (15A)
0Z,(0, Fo) . )
—Lﬁr = —Ki,9, j=1,2 (16A)

2
2 (=195
j=1

ol—¢  Biy | I cZj1, Fo)
XL+ (1= 3F)— Lu—--| Z{1, Fo}+ -
B Bi, qu X |

Bi,
=(93-99) [] -1 vg)KoLu—;} (17A)
Bi,

2
Pn }:(—1){ Zi{1, Foy+ ={83-8D). (184)

=1

The obtained problem (14A)—(18A)is a part of the general

one-dimensional case {47}-{50}, whose solution {54} for
the case considered, has the form:

83, 02,1, Fo)
Bi, (20,4

Z G; ﬂ—l//,, Xye-uFo (194)

Z{X, Fo) =

where ;;(X) is defined by equations {51}-{53}, G; by
equation {55}, g(0) by equation {36} and Z?(X)} by equations
(57)-{59}.

Equations {51}~{53}, generating the eigenfunctions and
eigenvalues, take the form:

J(X)+ 297y (X) = 0,
0 =

(20A)
(21A)

j=1.2

j=12

2
Z (—1i(1-9%_)

X{l:l+(l—84)lf--’l.ll ]w,u 1 1)}:0 (22A)
ﬂ

2 .
Y (- I)J{wju)#gv’— w,’-m}: 0 234)
The solution of the system (20A) is
Yi(X) = Cycos(d;uX)+ D;sin(9; uX) (24A)

where C; and D; are constants, which are to be determined.
From the boundary conditions (21A) it follows that D; = 0.
Substitution of (24A) into (22A) and (23A), and having in
mind that 9293 _; = 1/Lu, gives:

2

_Z (=11 =8_pa(C; =0 (25A)
_Z (= Db C; = 0 (26A)
where
g2 Bz,,.
ap) = 1+(1-39 )-%~ Lu —
qu
. Su
x cos(; p) ———sin(Hu) (27A)
Bi,
byl) = cos(%; ) — — - — sin(9; ) (28A)
d LY T i

The system (25A)—-(26A) has C; as a non-zero solution
when:
(1= 93)ay(Wba() — (1 = 9)ax(bi () = 0. (29A)

The obtained characteristic equation {29} defines an
infinite series of eigenvalues

My <y <. <<
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From equation {12} and using (10A), one gets:

—(_1Nitl Pn {20A)
G3-; =\ T4 2 J VA
\93_1
where
i 1 KoPn
¢ =(83-1 —_— ) —— 31A
1= 0] )(Biq LuBlm) Bi, (14)
1t follows then from equation {55} for G; that
2b 2 2, 1
= — C2 {b () eadi(p) —bi(perda(pd} ™ (324)
where
N N . Sin(sj#i) JPRN PPN
dilp) = 1+ u cos(d; ). (33A)
i

After some simple mathematical transformations of {56},
one gets:

Pn(9

b

2 2

2= Sl)
YR

ba )

Ki,
X{Sz——z[cz 2(p) — ¢ by ()]

Bi,
+ [[1 —(1—¢)KoLu —] by (u;)
Bi,

9%-1
al(ui):l b2(#i)}~ (344)

After substitution of (24A), (32A) and (33A) in the
solutions (19A) and having in mind (26A), one obtains

Z{X, Fo)
= ZY(X)—(93-99) ¥ Aibs_j(u)cos(8;m X)eHFe  (35A)
i=1
where
A; = %)’ zKlq 2 [b2Guyer~bi(pdei]
Hi '\92—91
+[[ —(1—¢)KoLu _—“ by (;
LL Dig ]
-1
an 111(#1')] bz(l»li)}
x{bg(ﬂi)CZdl(ﬂi)_blz(“i)cldz(#i)}~1~ (36A)

The quasistationary solution Z)(X) is obtained through
direct tackling of equation {57} under conditions {58}-{59}
and for the case considered, it has the form

1
=1+Ki, (1 +E—) 1—92)< +qu> Ki 97 X. (37A)
Ig
After substitution of (36A) in (35A) are obtained the
required potentials Z;,X, Fo) and hence from equation
(11A) and (12A) the final solution of the problem:

0
Z Aie_#?Fo

i=1

1
T(X,Fo)=1+Ki, (1 +—_—X)—
Bi,
2
x ¥ (=18} = 1)by() cos(Sa - X)

i=1

(384)

0(X, Fo) = 1+ PnKif(1-X)}+Pn Y A;e-#iFo

i=1

x(— l)jbj(.ui) cos(93 ;4 X).  (39A)
APPENDIX B
Let us find the solution of Luikov’s system
éT(X,Fo) ¢&*T(X,Fo) ¢0(X, Fo)
= = ;— —¢&Ko (1B)
dFo cx CF
20X, Fo) L *0(X, Foj Lup O*T(X, Fo)
= Lu 1 R
aFo oX? e
0<X <, Fo>0 (2B)
under the following boundary conditions
T(X,0) =0, 0(X,00=0 (3B)
6T, Fo)
T - Klq (4B)
20(0, Fo) .
T = —Pn Klq (SB)
T(c0, Fo) # o0, O(c0, Fo) # co. (6B)

In [2] after applying Laplace’s transform to equations
(1B) and (2B) and having in mind the initial condition (3B),
the following image of the solution is obtained:

T(X,s) = Ay exp($; X /s)+ Az exp(9, X /)
+Asexp(—$ X /) + Asexp(—9, X \/s) (7B)
1
0(X,s) = % 1(912—1)exp(91X\/s)+A2(9§—-1)
x €xp(9 X \/s) + A3(97 — Dy exp(— 9, X /5)
‘ +A4(93 - Dexp(—9,X./5)] (8B)
where

1 1 .
87 =-{[1+eKoPn+— |+ (-1
: 2{( eKoPn Lu) (-1

J(eerorne ) - 2]
X 1+eKoPn+—) ———1r. (9B)
Lu Lu

From the boundary conditions are determined the

constants A, A, A3 and A4. Hence the solutions (7B) and

{QR) talka tha form -
(60 a8 ne iorm :

k.9 = N Lg 93 p) FRHXV)
95982 54/s
9, X
_92(92_1)§4__72.ﬁ—|. (10B)
sys j
PnKi exp(— 9 X \/s)
J(X,s) = 1 -9
(X.5) 8%—912[ ! 54/s

+9, ﬂM} (11B)
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The inverse Laplace transform of (10B) and (11B} gives ) 2(Fo)¥Ki, (1 HX )
) ) R X Fob=Pn--mm o d | —8gexpl —{ =
T(X. F 2(Fo) Ki, {1 9,92~ 1) ( H X ) 31— 2AFo)t
. = s H (33— Dexpl -~ ; . B
0) 95 _y‘z E 1h72 I \ 2([;”);> y s ‘«}2 X P
Hexpl = - ——
SX TP 2P 7 o pop
— By 97— 1 RGNS -
2% )CXP< [2(1%)7 ) ‘ X , 9 X
- — 3 erfc
2(Fo)*

IS
— | [~ =3 ferfe|
2(Fop |\ Lu 2(Fo)*, 92erfc<j&'>:|} {13B)
1 ,f<-'*zx> (12B) "

DISTRIBUTIONS DE TEMPERATURE ET D’HUMIDITE PENDANT
LE SECHAGE D’UNE COUCHE DE MATERIAU HUMIDE

Résumé— En employant le systéme d’équations différentielles obtenues par Luikov, on étudie le séchage

d’une couche de matériau en contact avec une plaque chaude. Dans cet article est traité le probléme

déja considéré par Bruin [1] avec I'hypothése simplifiée, de l'influence négligeable du gradient de

potentiel d’humidité sur le transport de 'humidité. L’analyse présentée ici est basée sur la solution

analytique exacte. L’influence des paramétres sans dimension sur les distributions de température et de
potentiel d’humidité est illustrée par des exemples numériques.

TEMPERATUR- UND FEUCHTIGKEITSVERTEILUNG BEI KONTAKTTROCKNUNG
EINER FEUCHTEN PORIGEN SCHICHT

Zusammenfassung— Mit Hilfe des Luikovschen Differentialgleichungssystems wird die Trocknung einer

Schicht feuchten Materials, die sich in Kontakt mit einer Heizplatte befindet, untersucht. In dieser Zeit-

schrift wurde dieselbe Aufgabe von Bruin [1] mit der Vereinfachung betrachtet, daB die Feuchtigkeits-

bewegung unter dem Einfluss des Druckgradients vernachléssigbar klein ist. In der vorliegenden Arbeit

wird die genaue analytische Losung zum Analysieren des Problems, ohne die obenerwédhnten Einschrin-

kungen, angewandt. Der EinfluB dimensionsloser Parameter auf Temperatur- und Feuchtigkeitsverteilung
wird durch numerische Beispiele gezeigt.

PACIIPEJEJIEHUE TEMIIEPATYPBI U BJIATOCOAEPXAHUWS TP KOHTAKTHOH
CYIUIKE BJIAXKHOI'O ITOPUCTOI'O CJIOA
Annotauus — C noMoIUBIO CUCTeMb! AAGdepeHIHATBHBIX YpaBHeHHH JIBIKOBa MCCIEAOBaHa CyLIKa
CIIOS1 BJIaKHOTO MAaTepHalia, HAXOUAINEroCH B KOHTaKTe C ropsteii mnacTHHol. Dra Xe 3amaua
pewanace BpyusoMm [1] npy ynpoluarmomweM AOMYLWIEHAH O TOM, 4TO MEPEHOC BJATH NOHA BIHSHHEM
TpaJiMeHTa MOTeHUMaNa Biaronepenoca npenebpexumo Mai. JaHHbBUA aHAHM3 NPOBEACH HAa OCHOBE
TOYHOrO AHAIMTHYECKOTO pEINCHHs 6€3 YIMOMSIHYTOTO OrpaHHYcHHA. Bmmsmine OGe3pasMepHbIX
MapaMeTpPoB HA PAacOpeIesICHHE MMOTEHIHAIOB TEMHIEPATYPhl M BNArocoaep X aHus HIUTIOCTPHPYETCH
YHCICHHBIMY IPAMEPAMH.



